Integrability conditions for almost quaternion structures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrability of Rough Almost Complex Structures

We extend the Newlander-Nirenberg theorem to manifolds with almost complex structures that have somewhat less than Lipschitz regularity. We also discuss the regularity of local holomorphic coordinates in the integrable case, with particular attention to Lipschitz almost complex structures.

متن کامل

An integrability theorem for almost Kähler manifolds

In this paper we prove a new geometric integrability theorem for almost complex manifolds. Let M be a connected, oriented, smooth 2m real dimensional manifold with an U(m) structure on its tangent bundle. Moreover let ∇ be a compatible connection on it. Assume the complexified curvature of the connection has vanishing (0, 2) component. Then we claim that M can be given the structure of an m com...

متن کامل

Curvature of Almost Quaternion- Hermitian Manifolds

We study the decomposition of the Riemannian curvature R tensor of an almost quaternion-Hermitian manifold under the action of its structure group Sp(n)Sp(1). Using the minimal connection, we show that most components are determined by the intrinsic torsion ξ and its covariant derivative ∇̃ξ and determine relations between the decompositions of ξ ⊗ ξ, ∇̃ξ and R. We pay particular attention to the...

متن کامل

Integrability conditions for homogeneous potentials Third order integrability conditions for homogeneous potentials of degree -1

We prove an integrability criterion of order 3 for a homogeneous potential of degree−1 in the plane. Still, this criterion depends on some integer and it is impossible to apply it directly except for families of potentials whose eigenvalues are bounded. To address this issue, we use holonomic and asymptotic computations with error control of this criterion and apply it to the potential of the f...

متن کامل

Integrability of Jacobi Structures

We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu [20]. The methods used are those of CrainicFernandes on A-paths and monodr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hokkaido Mathematical Journal

سال: 1972

ISSN: 0385-4035

DOI: 10.14492/hokmj/1381759039